Etiket arşivi: göksel navigasyon

Göksel Navigasyon (Mevki Bulma)

Ölçüm veya gözlemle bulduğumuz ve bulunduğumuz noktadan geçen herhangi bir geometrik veya fiziksel çizgiye ?mevki çizgisi, LOP? denir. Tek bir mevki çizgisi bize sonsuz sayıda mevki olasılı verir. Gerçek mevki, en az iki mevki çizgisinin kesiştiği noktadır.

Gökyüzündeki bir cismin yüksekliğini ve CP?sini biliyorsak, merkezini ve yarıçapını bildiğimiz bir dairenin üzerindeyiz demektir. Tek bir cisim, tek bir mevki çizgisi verir. Daha önce de belirtildiği gibi, böyle büyük dairelerle uğraşmak oldukça zordur. Ancak dairenin kısa bir yayı da bizim işimizi görür. Kullanacağımız bu yay, asıl daireye kıyasla oldukça küçük olduğu için, sekant veya tanjant değeri ile değiştirilebilir.

Verilen bir mevkiden geçen boylama ?yerel boylam? denir. Saat dairesi ile yerel boylam arasında kalan açı, mevki bulmada temel bir görev alır. Bu açı, yerel boylamdan batıya doğru (0 derece ?+360 derece) ölçülür ve ?yerel saat açısı, LHA? adını alır. LHA, gözlem yapılan noktanın boylamı ile cismin GHA?sının toplamına eşittir. Eğer bulunan değer istenilen aralıkta (0 derece ?+360 derece) değilse 360 derece eklenir veya çıkartılır.

Sumner Yöntemi

Sumner yöntemi bugün çok fazla kullanılmasa da modern göksel navigasyonun temeli olarak kabul edildiği için burada değinilmiştir.

  • Bulunduğumuzu tahmin ettiğimiz enlemin kuzeyinde bir enlem seçeriz (enlem1). (haritadaki enlem çizgilerinden bize en yakın ve kuzeyimizdeki güzel bir tercih olabilir.)
  • enlem1, dec ve gözlemlediğimiz cismin yüksekliği olan H0?yu kullanarak boylam açısını, t, buluruz:

(t değeri LHA ile aynıdır, ancak LHA başlangıç meridyeninden batıya doğru 0 dereceden +360 dereceye kadar tanımlanmıştır. t ise başlangıç meridyeninden batıya 0 dereceden +180 dereceye kadar, doğuya doğru da 0 dereceden -180 dereceye kadar tanımlanmıştır.)

Denklemi çözdüğümüzde iki t değerine ulaşırız. Aşağıdaki şekilde de görüldüğü gibi, eşit yükseklik dairesi, enlem dairesini iki noktada keser.

Eşit yükseklik dairesinin enlem1?i kestiği noktanın olası boylamları şu şekilde bulunur:

Boylam = t ? GHA
Boylam? = 360 derece ? t ? GHA

Tahmin ettiğimiz boylam değeriyle bulduğumuz değerleri karşılaştırarak doğru boylamı buluruz.

  • Güneyimizde kalan ikinci bir enlem (enlem2) seçeriz ve bu enlemle ilk iki basamağı tekrarlarız. Seçtiğimiz iki enlem arasındaki açının 1 ya da 2 dereceyi geçmemesine dikkat etmeliyiz.
  • Haritanın üzerinde, bulduğumuz boylam değerlerini işaretleyerek bu iki noktayı bir çizgi ile birleştiririz. Bu çizgi bize ilk mevki çizgimizi verir (LOP). Yerimizi kesin olarak belirleyebilmek için ikinci bir cismi daha gözlemlememiz gerekir. İki mevki çizgisinin kesiştiği nokta bize mevkiimizi verir.

Eğer bulunduğumuz enlemle ilgili çok yaklaşık bir bilgimiz yoksa, iki çizginin kesişme noktası enlemlerin arasında olmayabilir. Yine de bulduğumuz nokta doğrudur. Bu yöntem, dairelerin eğriliğini göz ardı ettiği için küçük bir hata içerir.

Kesişme Yöntemi

Gözlem yapılan herhangi bir noktada, gözlemi yapılan cismin yüksekliği, sadece gözlemcinin enlemine, cismin açılımına (dec) ve boylam açısına bağlıdır. Trigonometrinin de yardımı ile yükseklik aşağıdaki formül ile bulunabilir:

Öncelikle, bulunduğumuz tahmini mevkiinin yakınlarında bir nokta (haritada enlem ve boylam çizgilerinin kesiştiği noktalardan bize en yakın olanı) seçeriz. Bu nokta ?tahmini mevki, TM? olarak isimlendirilir. Yukarıdaki yükseklik formülünün yardımıyla cismin TM?nin koordinatlarına (enlemTM ve boylamTM) bağlı olan yüksekliğini hesaplarız. Bulunan yüksekliğe Hc diyelim. Genelde Hc, gözlemlerimiz sonucu bulduğumuz Ho?dan farklıdır. İki yükseklik arasındaki bu farka kesişim denir.

Eğer ?H sıfıra eşitse, TM ile gerçek mevki aynıdır. İkisinin farklı olduğu durumlarda, bir mevki çizgisi bulmaya çalışırız. Kesişimi deniz mili cinsinden ifade edebiliriz:

TM ile ölçümünü yaptığımız cismin CP?sini bir doğru ile birleştirdikten sonra, bu çizgi üzerinde, eğer ?H sıfırdan büyükse CP?ye doğru, değilse öteki yönde ?H kadar gidilir ve bulunan noktadan TM ? CP arasındaki çizgiye dik bir başka çizgi çizilir. İşte bu çizgi, üzerindeki herhangi bir noktanın bizim mevkiimizi verdiği mevki çizgisidir. (aşağıdaki resimde kırmızı çizgi ile gösterilmiş.)

Bu grafikte Az değeri bir çok yöntemle bulunabilir. Burada navigasyon üçgeninden faydalanılarak elde edilen aşağıdaki formül kullanılmıştır:

Arccos fonksiyonu 0 derece ile +180 derece arasında bir değer verdiği için bu formülden bulunan azimut değeri her zaman gerçek azimutu, AZN (0 derece?.+360 derece) vermez. Doğru sonuca ulaşmak için bir düzeltme yapmak gerekebilir:

Kesin pozisyonumuzu bulabilmek için, yine, ikinci bir cismi daha gözlemleyip bir başka mevki çizgisi bulmamız ve bu iki çizgiyi kesiştirmemiz gerekir. Bu metotta, mevki çizgilerinin eğrilikleri göz ardı edilir. Sonuç olarak da bulduğumuz mevki hata içerir. Ancak, eğer kullandığımız eş yükselti dairelerinin yarıçapları yeteri kadar büyükse, bu hata ihmal edilebilir.

Kaynak:

1. Neslihan Gerek ? Boğaziçi Universitesi Yelken Takımı PDF kitaplarından

[1] http://home.t-online.de/home/h.umland/
(An introductory guide for celestial navigation)
[2] http://www.celestialnavigation.net/
(provides useful information and links to other sites about celestial navigation)
[3] http://www.tecepe.com.br/nav/ (navigator software)
[4] http://jacq.istos.com.au/sundry/navig.html (navigation and related subjects)
[5] http://aa.usno.navy.mil/faq/docs/celnav.html (celestial navigation resources)
[6] http://www.seamanship.co.uk/deck/navigator/ASNAv/ASNAv%20Site/index.htm
(astronomic navigation software)

Göksel Navigasyon (Coğrafi Mevki ve Zaman)

Göksel navigasyon modern bilimden çok daha önce kullanılan yöntemleri temel alır. Bu nedenle kabul ettiğimiz bazı varsayımlar, astronomi ve coğrafyanın bazı temel ilkeleri ile çatışabilir. Ancak, bu varsayımlar işimizi oldukça kolaylaştırır ve hatalar da kabul edilebilecek seviyededir.

Gökküre, Gökbilim ve seyrüseferde, Dünya’yla eşmerkezli ve eşeksenli, devasa çaplı varsayımsal bir küredir. Gökyüzündeki tüm cisimlerin iç yüzeyinde yer aldığı bir küre şeklinde düşünülebilir. Gök ekvatoru yer ekvatoruyla, gök kutupları da yerin kutup noktalarıyla aynı doğrultuda çakışıktır. Gökküre yansıtması gökcisimlerinin konumlarının belirlenmesi için çok pratik bir yöntemdir.

Varsayımlarımızdan bir tanesi dünyanın evrenin merkezinde olduğudur. Gökyüzündeki her cisim merkezinde dünyanın olduğu dev bir kürenin (?gök küre?) iç yüzeyinde yer alır. Ölçümlerimizde cisimlerin mutlak pozisyonları ile ilgilenmeyiz, bizim için önemli olan görünür pozisyonlardır.

Diğer bir varsayım da dünyanın yuvarlak olduğu varsayımıdır. Düzlemi dünyanın merkezinden geçen dünya yüzeyindeki dairelere ?büyük daire? denir. Bu daireler dünya üzerindeki en büyük çapa sahip dairelerdir. Bütün boylamlar ve ekvator birer büyük dairedir. Diğer daireler ise küçük daire olarak adlandırılır.

Dünya üzerindeki her noktanın ?gök küre?de bir karşılığı vardır. Örneğin, gözlemcinin projeksiyonu zenittir.

Gökyüzündeki bir cismin dünya yüzeyindeki coğrafik pozisyonu (CP) ekvator ve 0 derece meridyenine göre (Greenwich Meridyeni) konumlandırılır. Cismin bu meridyene olan açısal uzaklığı ?Greenwich Saat Açısı, GHA? olarak isimlendirilir. 0 dereceden batıya doğru 360 dereceye kadar olan bir değer alır. CP ve kutuplardan geçen büyük daireye saat dairesi denir. CP?nin ekvator düzlemine olan açısal uzaklığı ?Açılım, dec? olarak adlandırılır ve kuzey yarım kürede is 0 dereceden +90 dereceye, güney yarım kürede is 0 dereceden -90 dereceye kadar bir değer alır. Dec değeri coğrafik enlem değeri ile aynıdır. Ancak, GHA eğer CP batı yarımkürede ise coğrafik boylam değeri ile aynıdır.

Greenwich Meridyeni dünyayla birlikte döndüğü ve çoğu gök cismi gökyüzünde neredeyse sabit olduğu için bir cismin GHA?sı saatte yaklaşık 15 derece artar (15 derece 2.46?). Ancak güneş, ay ve gezegenlerin GHA değerleri daha farklıdır. Çünkü bu cisimlerin görünür mevkilerini dünyanın dönüşünün yanı sıra kendi dönüşleri de (gezegenlerin güneşin çevresinde ve ayın dünyanın çevresinde) etkiler.

GHA?nın hızlı değişimi yüzünden, gözlem yapıldığı an, eğer mümkünse saniyesine kadar not alınmalıdır. Almanaklardaki mevkiler, ?Evrensel Zaman, UT? referans alınarak yazılmıştır. UT şu şekilde bulunur:

(Eğer UT 24?ten büyükse, 24 çıkarın.)

Güneşin GHA değeri, tanım gereği her saat 15 derece artar ve 24 saatte 360 dereceyi tamamlar. Ancak gözlemlenen güneşin GHA değerindeki değişim yıl periyodik olarak değişir. Bazen 15 dereceden biraz küçük, bazen de biraz büyük olur. Bu fark, almanaklarda ?EoT ? equation of time ? ? olarak gösterilir.

Deniz Almanağı: Güneşin, ayın ve bazı gözlemlenebilen gezegenlerin tahmini GHA ve dec değerleri, UT referans alınarak yılın her gününün her saati için almanaklarda yazılmıştır. 57 yıldızın GHA ve dec?i ise 3 günlük periyotlar halinde yazılmıştır.

Dünya kendi ekseni etrafında batıdan doğuya bir defada 23 saat 56 dakikada döner. Gök küre ve üzerindeki bütün objeler Göksel Kutup etrafında aynı zamanda doğudan batıya dönüş yönünde görülür. Bu günlük bir harekettir. Bu nedenle yıldızlar doğudan doğar. Kuzey-Güney hattında (meridyen) zirvesine ulaşır. Batı’da da batar.

Sonraki gecede özel bir yıldız doğudan tekrar yükselir fakat bizim normal saatimiz 24 saat 0 dakika döngüsüyle çalışır. O bunu 4 dakika daha erken yapar. Sonraki geceye kadar fark 8 dakika olacaktır. Böylece takip eden her gece(ya da gündüz)ile ileride olacaktır. Saatlerimizin ayarlanmamış açık görünen nedeniyle Güneş hala gök yüzünde durmuyordur. Yıldızların yaptığı gibi,yaklaşık 1°doğu tarafına doğru hareket eder. Çünkü 1° lik açı zamanda 4 dakikaya uymaktadır(360°=24 saat). Bu nedenle biz güneşi tekrar merdiyenin arkasında görebilmek için 4 dakikalık bir extra zamana ihtiyaç duyarız. Bu nedenle normal saatler, Güneş’e ait zamanı gösterir. Yıldız hareketlerini çalışan Astronomlar saatlerinin yıldızlarla hesaplanan ve 23 saat 56 dakikalık bir dönemde çalışan zamanı göstermesini isteyebilirler.

Yıldızlar saatte 15 derece açısal hızla dönerler.  Demek ki 360 dereceyi 24 saatte tamamlarlar!

Merkezdeki yıldız (kutupyıldızı) hareket etmediğinden yön bulmada kullanılabilir.

Eskilere göre günlük hareket

?İnsanlar çok eski çağlardan beri yıldızların günlük hareketinin farkındaydı.
?Ancak dünyanın hareketsiz olarak evrenin merkezinde yer aldığına inanıyorlardı.
?Dolayısıyla onlar için günlük hareket dünyanın dönmesinden kaynaklanan görünümsel bir olay değildi.
?Eski insanlar için yıldızların günlük hareketi gerçekti yani yıldızlar fiilen dünyanın etrafında dönmekteydi.

Takımyıldızlar fiziksel olarak birbirlerine yakın olmasalar bile gökküre üzerindeki izdüşümleri birbirine yakın olduğu için bir arada görünen yıldızlardan oluşur.

Kaynak:

1. Neslihan Gerek ? Boğaziçi Universitesi Yelken Takımı PDF kitaplarından

[1] http://home.t-online.de/home/h.umland/
(An introductory guide for celestial navigation)
[2] http://www.celestialnavigation.net/
(provides useful information and links to other sites about celestial navigation)
[3] http://www.tecepe.com.br/nav/ (navigator software)
[4] http://jacq.istos.com.au/sundry/navig.html (navigation and related subjects)
[5] http://aa.usno.navy.mil/faq/docs/celnav.html (celestial navigation resources)
[6] http://www.seamanship.co.uk/deck/navigator/ASNAv/ASNAv%20Site/index.htm
(astronomic navigation software)

Vikipedia

Göksel Navigasyon (Yükseklik Hesaplaması)

Gökyüzündeki bir cismin pozisyonu (görünür ? apparent – pozisyonu) ?Koordinatların Ufuk Sistemi? adlı bir sistemde tanımlanır. Buna göre, gözlem yapan kişi, ufuk çizgisinin ikiye böldüğü sonsuz yarıçaplı hayali bir kürenin merkezinde bulunur.

Gözlemi yapılan cismin ufuk çizgisinden yüksekliği altitude olarak ifade edilir ve derece cinsinden söylenir. Eğer altitude 0 derece ile +90 derece arasında ise cisim ufuk çizgisinin üzerindedir ve görünüyordur. Eğer -90 derece ile 0 derece arasında ise cisim ufuk çizgisinin altındadır ve görünmez. Zenit uzaklığı, gözlemcinin tam tepesindeki noktadan cismin açısal uzaklığıdır. Zenitin tam karşısındaki nokta ise nadir olarak isimlendirilir. Gerçek azimut (semt) cismin ufuk üzerinde gerçek kuzeye göre ölçülen doğrusal yönüdür.

Deniz sekstantı iki ayna ve bir teleskopun metal bir çerçeveye aşağıdaki şekilde monte edilmesiyle oluşmuş bir sisteme dayanır. Sabit ufuk camı (horizon glass) yarı saydam bir aynadır ve çerçeveye monte edilmiştir. Tamamen yansıtıcı olan indeks aynası ise, çerçeveye dik olan bir pivot etrafında döndürülebilen bir kola monte edilmiştir.

Bir cismin yüksekliği ölçülmek istendiğinde, çerçeve dikey tutulur, ve görünür ufuk çizgisi teleskop ve ufuk camı ile aynı düzleme getirilir. Gözlemlenen cisimden gelen ışık, önce indeks aynasından ufuk camına yansır, oradan da teleskopa gelir. İndeks aynasını pivot etrafında yavaşça döndürerek cismin ve ufkun üst üste binmiş görüntüsü elde edilir. Bu esnada indeks aynası ile ufuk camının düzlemleri arasında kalan açının iki katı, gözlemlenen cismin yüksekliğini (altitude) verir. Sekstantın çerçevesinin altındaki kavisli ayaktan bu değeri okuyabiliriz.

Ancak okuduğumuz bu değer aletten ve kullanıcıdan kaynaklanan bazı hataları içerir. Bu hatalardan birisi indeks hatası (IE) olarak isimlendirilir ve hesaplama yapılmadan önce bulduğumuz açıdan çıkarılması gerekir. Bu hata sekstanttan kaynaklanır.

1. düzeltme: H1 = Hs ? IE
Hs : sekstantla yapılan ölçüm sonucu bulunan yükseklik (derece cinsinden)
IE : indeks hatası

Gözlem yapılan nokta dünyanın tam üzerinde yapılmadığı ve dünya sonsuz büyüklükte bir düzlem olmadığı için, hissedilen ufuk ile görünen ufuk arasında bir açı vardır. Atmosferde ışığın kırılması nedeniyle görünen ufuk çizgisi ile geometrik ufuk çizgisi de aynı düzlemde değildir.

Hissedilen ufuk ile görünen ufuk arasında kalan açı dip olarak adlandırılır ve gözün deniz seviyesinden yüksekte olmasından kaynaklanan bir hatadır.

Dip ? 1.76 * ?HE[m]

Bu formül deneyseldir ve dünya yüzeyinin eğikliği ile atmosferden kaynaklanan kırılmayı da hesaba katar. Dip?i daha doğru hesaplayabilmek için gözlemcinin önündeki ve arkasındaki görünür ufuk çizgileri arasında kalan açının hesaplanması gerekir. Bu değeri 180 dereceden çıkartıp ikiye böldüğümüzde doğru dip değerini buluruz. Ancak iki ufuk çizgisi arasındaki açıyı deniz üzerinde hassas olarak ölçmek oldukça zordur ve sekstanta benzer özel bir alete daha ihtiyacımız vardır.

2. düzeltme: Ha = H1 ? dip

Bir uzay cisminden gelen ışık, atmosfere girdikten sonra dünyadan uzaklaşacak şekilde kırılır. Bu nedenle cisimler olduklarından daha yüksekte görünürler.

Kırılma Ha?ya bağlı olarak değişir. ?Standart kırılma?, Ro, yükseklik 90 derece iken 0?dır. Yükseklik düştükçe kırılma artar ve 0 derecede yaklaşık 34? olur. Ro değişik şekillerde hesaplanabilir. Kesin olmamakla beraber, aşağıdaki formül yaklaşık bir kırılma hesaplamasında kullanılabilir:

Eğer atmosfer standart kabul edilen durumlardan (1010 mb atmosferik basınç ve 10 derece sıcaklık) çok farklıysa, özellikle düşük yükseklikler çok hatalı ölçülür.

3. düzeltme: H3 = Ha ? R0

Dünyanın tam merkezinde olmadığımız için, 3. düzeltmeden sonra ulaştığımız ?hissedilen ufuk? da sistemin temel aldığı ?göksel ufuk?la çakışmaz. İki ufuk arasındaki bu fark ?paralaks, HP? olarak isimlendirilir. Navigasyonda kullanılan gezegenlerin paralaksları almanaklarda belirtilmiştir.

4. düzeltme: H4 = H3 ? P

Ayı ve güneşi gözlemlediğimizde, cismin merkezini tam olarak belirleyemeyebiliriz. Bu durumda cismin üstünden veya altından ölçüm yaparız ve almanakta belirtilen yarıçap değerini bu ölçümden çıkarırız. Kullandığımız yarıçap değeri derece cinsindendir ve paralaks ile cismin yarıçapına bağlıdır.

5. düzeltme: H5 = H4 ± SD

KAYNAKLAR:

Neslihan Gerek ? Boğaziçi Universitesi Yelken Takımı PDF kitaplarından

[1] http://home.t-online.de/home/h.umland/
(An introductory guide for celestial navigation)
[2] http://www.celestialnavigation.net/
(provides useful information and links to other sites about celestial navigation)
[3] http://www.tecepe.com.br/nav/ (navigator software)
[4] http://jacq.istos.com.au/sundry/navig.html (navigation and related subjects)
[5] http://aa.usno.navy.mil/faq/docs/celnav.html (celestial navigation resources)
[6] http://www.seamanship.co.uk/deck/navigator/ASNAv/ASNAv%20Site/index.htm
(astronomic navigation software)